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Sequential Minimal optimization (SMO)

The SMO algorithm was proposed by John C. Platt in 1998
and became the fastest quadratic programming optimization
algorithm, especially for linear SVM and sparse data
performance.

One of the best reference about SMO is “Sequential Minimal
Optimization A Fast Algorithm for Training Support Vector
Machines” written by John C. Platt.
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Sequential Minimal optimization (SMO)

Sequential

Not parallel
Optimize in sets of 2 Lagrange multipliers

Minimal

Optimize smallest possible sub-problem at each step

Optimization

Satisfy the constraints for the chosen pair of Lagrange
multipliers
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Sequential Minimal optimization (SMO)

The Sequential Minimal Optimization (SMO) algorithm is
derived by taking the idea of the decomposition method to its
extreme and optimizing a minimal subset of just two points at
each iteration.

The power of this technique resides in the fact that the
optimization problem for two data points admits an analytical
solution, eliminating the need to use an iterative quadratic
programming optimizer as part of the algorithm.

The requirement that the condition
∑`

i=1 yiαi = 0 is enforced
throughout the iterations implies that the smallest number of
multipliers that can be optimized at each step is 2: whenever
one multiplier is updated, at least one other multiplier needs
to be adjusted in order to keep the condition true.
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Sequential Minimal optimization (SMO)

At each step SMO chooses two elements αi and αj to jointly
optimize, find the optimal values for those two parameters
given that all the others are fixed, and updates the α vector
accordingly.

The choice of the two points is determined by a heuristic,
while the optimization of the two multipliers is performed
analytically.

Despite needing more iterations to converge, each iteration
uses so few operations that the algorithm exhibits an overall
speed-up of some orders of magnitude.
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Sequential Minimal optimization (SMO)

Besides convergence time, other important features of the
algorithm are that it does not to store the kernel matrix in
memory, since no matrix operations are involved, that it dose
not use other packages, and that it is fairly easy to implement.

Note that since standard SMO does not use a cached kernel
matrix, its introduction could be used to obtain a further
speed-up, at the expense of increased space complexity.
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1-norm Soft Margin

Primal Form

min
w,b,ξi

1

2
‖w‖2 + C

∑̀
i=1

ξi (1)

subject to

yi

(
w>xi + b

)
+ ξi − 1 > 0 (2)

ξi > 0, i = 1, 2, . . . , ` (3)
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1-norm Soft Margin

Dual Form

max
α

W (α) =
∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjK (xi , xj) (4)

subject to

∑̀
i=1

αiyi = 0

0 6 αi 6 C ; i = 1, 2, . . . , `

where
K (xi , xj) ≡ x>i xj
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Without loss of generality we will assume that two elements,
α1, α2 that have been chosen for updating to improve the
objective value. In order to compute the new values for these
two parameters, one can observe that in order not to violate

the linear constraint
∑̀
i=1

αiyi = 0, The new values of the

multipliers must be on a line,

y1α
(old)
1 + y2α

(old)
2 = constant = y1α1 + y2α2 (5)

in (α1, α2) space, and in the box defined by 0 6 α1, α2 6 C
as shown in the following figure:

Figure:
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Sequential Minimal optimization (SMO)

Without loss of generality, the algorithm first compute α
(new)
2

and successively use it to obtain α
(new)
1 .

The box constraint 0 6 α1, α2 6 C together with the linear
equality constraint, provides a more restrictive constraint on

the feasible values for α
(new)
2 :

U 6 α
(new)
2 6 V , (6)

where U and V are defined as follows:
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The Bound for αnew
2

if y1 6= y2 {
U = max{0, α(old)

2 − α(old)
1 },

V = min{C ,C − α(old)
1 + α

(old)
2 }

(7)

if y1 = y2 {
U = max{0, α(old)

1 + α
(old)
2 − C},

V = min{C , α(old)
1 + α

(old)
2 }

(8)
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Sequential Minimal optimization (SMO)

Theorem

The maximun of the objective function for the optimization
problem

max
α

W (α) =
∑̀
i=1

αi −
1

2

∑̀
i=1

∑̀
j=1

αiαjyiyjK (xi , xj)

subject to ∑̀
n=1

αiyi = 0

0 6 αi 6 C ; i = 1, 2, . . . `
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When only α1 and α2 are allowed to change, is achieved by first
computing the quantity

α
(new ,unc)
2 = α

(old)
2 +

y2
{
E
(old)
2 − E

(old)
1

}
κ

(9)

where

Ei ≡ f (xi )− yi =

∑̀
j=1

αjyjKji + b

− yi ; i = 1, 2, (10)

and clipping it to enforce the constraint U 6 α
(new)
2 6 V :

α
(new)
2 =


V , if α

(new ,unc)
2 > V

α
(new ,unc)
2 , if U 6 α

(new ,unc)
2 6 V

U, if α
(new ,unc)
2 < U

(11)
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where U and V is defined by

if y1 6= y2 {
U = max{0, α(old)

2 − α(old)
1 },

V = min{C ,C − α(old)
1 + α

(old)
2 }

(12)

if y1 = y2 {
U = max{0, α(old)

1 + α
(old)
2 − C},

V = min{C , α(old)
1 + α

(old)
2 }

(13)

and the value of α
(new)
1 is obtained from α

(new)
2 as

α
(new)
1 = α

(old)
1 + y1y2

(
α
(old)
2 − α(new)

2

)
(14)
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Sequential Minimal optimization (SMO)

Proof : For representation simplicity, let’s define the following
symbols for each element of matrix K

K (xi , xj) ≡ Kij (15)

f (xi ) ≡
∑̀
j=1

αjyjKji + b (16)

vi ≡
∑̀
j=3

αjyjKij = f (xi )−
2∑

j=1

αjyjKij − b ; i = 1, 2, (17)

Ei ≡ f (xi )− yi =

∑̀
j=1

αjyjKji + b

− yi ; i = 1, 2, (18)
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Sequential Minimal optimization (SMO)

Consider the objective as function of α1 and α2:

W (α1, α2) = α1 + α2 −
1

2
K11α

2
1 −

1

2
K22α

2
2 − α1α2y1y2K12

− y1α1

∑̀
j=3

yjαjK1j

− y2α2

∑̀
j=3

yjαjK2j +
∑̀
i=3

αi

− 1

2

∑̀
i=3

∑̀
j=3

αiαjyiyjKij (19)
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Sequential Minimal optimization (SMO)

Substitute (16) (17) (18) and into (19) yields

W (α1, α2) = α1 + α2 −
1

2
K11α

2
1 −

1

2
K22α

2
2 − α1α2y1y2K12

− y1α1v1 − y2α2v2 + constant (20)

Note also that the constraint
∑̀
i=1

α
(old)
i yi =

∑̀
i=1

αiyi = 0, implies

the condition

α1 + sα2 = constant = α
(old)
1 + sα

(old)
2 = γ (21)

where s = y1y2. The above equation demonstrates how α
(new)
1 is

computed from α
(new)
2 .

α1 = γ − sα2 (22)
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Sequential Minimal optimization (SMO)

Eliminating α1 in (20), we have the objective function as α2

W (α2) = γ − sα2 + α2 −
1

2
K11(γ − sα2)2 − 1

2
K22α

2
2

− sK12(γ − sα2)α2 − y1(γ − sα2)v1 − y2α2v2

+ constant

= −1

2
K11

(
γ2 − 2γsα2 + α2

2

)
− 1

2
K22α

2
2 + s2K12α

2
2

+ (1− s − sK12γ)α2 − y1v1y2v2 + constant

=
1

2
(2K12 − K11 − K22)α2

2

+ (1− s + K11sγ − K12sγ + y2v1 − y2v2)α2

+ constant (23)
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Sequential Minimal optimization (SMO)

The stationary points satisfies

dW (α2)

dα2
= (2K12 − K11 − K22)α2

+ (1− s + K11sγ − K12sγ + y2v1 − y2v2)

= 0 (24)

This yields

α
(new ,unc)
2 (K11 + K22 − 2K12) = 1− s + K11sγ − K12sγ + y2v1 − y2v2

= 1− s + (K11 − K12)sγ + y2(v1 − v2)

(25)
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Sequential Minimal optimization (SMO)

multiplier (25) by y2, it is easy to see

α
(new ,unc)
2 κy2 = y2 − y1 + (K11 − K12)y1γ + v1 − v2

= y2 − y1 + (K11 − K12)y1γ +

f (x1)−
2∑

j=1

yjαjK1j


−

f (x2)−
2∑

j=1

yjαjK2j

 (26)

and
y1γ = y1(α1 + sα2) = y1α1 + y2α2 (27)
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Sequential Minimal optimization (SMO)

Since

2∑
j=1

yjαjK2j −
2∑

j=1

yjαjK1j = y1α1K21 + y2α2K22 − y1α1K11 + y2α2K12

(28)

Substitute(27) (28) into (26), we can find

α
(new ,unc)
2 κy2 = y2 − y1 + (K11 − K12)(α1y1 + α2y2) + y1α1K21

+ y2α2K22 − y1α1K11 + y2α2K12 + f (x1)− f (x2)

= y2 − y1 + f (x1)− f (x2) + y2α2K11 − y2α2K12

+ y2α2K22 − y2α2K12

= y2α2κ+ (f (x1)− y1)− (f (x2)− y2) (29)
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Sequential Minimal optimization (SMO)

So we have

α
(new)
2 = α

(old)
2 +

y2
{
E
(old)
2 − E

(old)
1

}
κ

where

Ei ≡ f (xi )− yi =

∑̀
j=1

αjyjKji + b

− yi ; i = 1, 2,

Finally, we must clip α
(new ,unc)
2 if necessary to ensure it remains in

the interval [U,V ].
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Sequential Minimal optimization (SMO)

Discussion:
If s = y1y2 = 1 (y1 = y2), then α1 + α2 = γ.

1 If γ > C , then maxα2 = C = minV and
minα2 = γ − C = α1 + α2 − C = maxU .See Figure 2.2

2 If γ < C , then maxα2 = γ = α1 + α2 = minV and
minα2 = 0 = maxU .See Figure 2.3

(a) Fig.2.2 γ > C (b) Fig.2.3 γ < C

Figure: If s = y1y2 = 1, then α1 + α2 = γ
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Sequential Minimal optimization (SMO)

If s = y1y2 = −1 (y1 6= y2), then α1 − α2 = γ
1 If γ > 0, then maxα2 = C − γ = C − α1 + α2 = minV and

minα2 = 0 = maxU. See Figure 2.4.
2 If γ < 0, then maxα2 = C = minV and

minα2 = −γ = −α1 + α2 = maxU . See Figure 2.5.

(a) Fig.2.4 γ > C (b) Fig.2.5 γ < C

Figure: If s = y1y2 = −1, then α1 − α2 = γ
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Sequential Minimal optimization (SMO)

From above discussion, we can find α2 must lie in the following
range to make sure it is clipped:

maxα2 = minV (30)

minα2 = maxU (31)

where U and V is given by

if y1 6= y2 {
U = max{0, α(old)

2 − α(old)
1 },

V = min{C ,C − α(old)
1 + α

(old)
2 }

(32)

if y1 = y2 {
U = max{0, α(old)

1 + α
(old)
2 − C},

V = min{C , α(old)
1 + α

(old)
2 }

(33)
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Sequential Minimal optimization (SMO)

and the value of α
(new)
1 is obtained from α

(new)
2 as

α
(new)
1 = α

(old)
1 + y1y2

(
α
(old)
2 − α(new)

2

)
(34)

Clipping it to enforce the constraint U 6 α
(new ,clipped)
2 6 V :

α
(new ,clipped)
2 =


V , if α

(new ,unc)
2 > V

α
(new ,unc)
2 , if U 6 α

(new ,unc)
2 6 V

U, if α
(new ,unc)
2 < U

(35)
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Sequential Minimal optimization (SMO)

Figure: Two possible situations for the update of α1 and α2 in SMO. (a)
s = y1y2 = 1 and (b) s = y1y2 = −1

Yuh-Jye Lee Sequential Minimal Optimization (SMO)



Introduction 1-norm Soft Margin Sequential Minimal optimization (SMO) Proof of SMO remark

Sequential Minimal optimization (SMO)

Remark

Ei ≡ f (xi )− yi =

∑̀
j=1

αiyiKij + b

− yi ; i = 1, 2, (36)

where f (x) denote the current hypothesis determined by the value
of α and b at a particular stage of learning, and Ei is the difference
between function output and target classification on the training
point x1 or x2. Note Ei can be large if a point is correctly classified.

For example if y1 = 1,and the function output is f (x1) = 5, the
classification is correct, but E1 = 4.
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Sequential Minimal optimization (SMO)

Remark

d2W (α2)

dα2
2

= −K11 − K22 + 2K12 ≡ κ 6 0

Proof.

κ ≡ −K11 − K22 + 2K12 = −x>1 x1 − x>2 x2 − 2x>1 x2 (37)

= −(x2 − x1)>(x2 − x1)

= −‖x2 − x1‖2 6 0
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